jueves, 29 de abril de 2010

Cocina

El tipo de cocina depende, del cocinero, de los ingredientes y de las costumbres u obligaciones culturales, médicas y religiosas para unos alimentos en concreto.

Para que un alimento sea parte íntegra del modo de alimentación tendrá que estar fácilmente disponible, en cantidad adaptada a las necesidades humanas y, a ser posible, a buen precio.

Como el hombre se nutre, no solamente para asegurar su crecimiento y desarrollo sino también por placer, los alimentos tendrán que tener a menudo unas calidades gustativas, las cuales cambian según las sociedades.

Comer es también un acto social, algunas personas intentan no comer ciertos alimentos por su imagen desvalorizante (el aceite de colza después de la Primera Guerra Mundial), buscan unos más raros y caros (el foie-gras o el caviar) o rivalizan de imaginación para preparar algún plato de manera compleja, apetitosa y visualmente satisfactoria.


La cocina
es además el soporte y manifestación de alguna posición religiosa y hasta política. Así, algunas costumbres culturales o algunas religiones han puesto tabúes sobre ciertos alimentos o preparaciones.

Los alimentos y modos de preparación elegidos dependen de los principios de cada consumidor. Buscar alimentos con Label de calidad o Denominación de Origen, de agricultura biológica o el rehuso de comer alimentos de origen animal (vegetarianos, por ejemplo) viene a menudo de una elección ética, igual que el deseo de no-violencia a los animales, o para no imponer un impacto tan grande para la biosfera (desde el punto de vista energética, la producción de 1 kilo de proteínas animales resulta más cara que la misma cantidad de proteínas vegetales). Estas posiciones son muy defendidas por los ecologistas, ver también macrobióticos.

La elección inicial de los alimentos depende de varias variables: antes, el primer factor fue el de la disponibilidad, por ejemplo la carne de mamut en una eco-región al norte de Europa o los períodos de recolección de los agroalimentos. Las costumbres y técnicas alimentarias se formaron en torno a esos períodos favorables y de la disponibilidad de los combustibles (madera, carbón).

Ahora, para la mayor parte de la humanidad, los alimentos utilizados, más o menos variados, vienen de los huertos y invernaderos, según la biodiversidad de cada región. En los países industrializados se compran en los comercios próximos o en supermercados. Encontramos alimentos sin transformar, parcial o completamente preparados para su consumición. En este caso lo único que hace falta es calentarlo.

Gracias a la multiplicación de los intercambios entre países se puede encontrar frutas y verduras en todo momento del año, cosa que antes era imposible. Esta disponibilidad permanente de algunos comestibles ya ha cambiado la conducta alimentaria y numerosos ritos. También se ha observado un abandono progresivo de la consumición de varios alimentos, víctimas del fenómeno de la moda o simplemente olvidados por la industria agroalimentaria.

Teoría de las bombas

Bomba centrífuga
La característica principal de la bomba centrífuga es la de convertir la energía de una fuente de movimento (el motor) primero en velocidad (o energía cinética) y después en energía de presión. El rol de una bomba es el aporte de energía al líquido bombeado (energía transformada luego en caudal y altura de elevación), según las características constructivas de la bomba misma y en relación con las necesidades específicas de la instalación. El funcionamiento es simple: dichas bombas usan el efecto centrífugo para mover el líquido y aumentar su presión. Dentro de una cámara hermética dotada de entrada y salida (tornillo sin fin o voluta) gira una rueda con paleta (rodete), el verdadero corazón de la bomba. El rodete es el elemento rodante de la bomba que convierte la energía del motor en energía cinética (la parte estática de la bomba, o sea la voluta, convierte, en cambio, la energía cinética en energía de presión). El rodete está, a su vez, fijado al eje bomba, ensamblado directamente al eje de trasmisión del motor o acoplado a él por medio de acoplado rígido.

Cuando entra líquido dentro del cuerpo de la bomba, el rodete (alimentado por el motor) proyecta el fluido a la zona externa del cuerpo-bomba debido a la fuerza centrífuga producida por la velocidad del rodete: el líquido, de esta manera, almacena una energía (potencial) que se transformará en caudal y altura de elevación (o energía cinética). Este movimento centrífugo provoca, al mismo tempo, una depresión capaz de aspirar el fluido que se debe bomberar. Conectando después la bomba con la tubería de descarga, el líquido se encanalará fácilmente, llegando fuera de la bomba. El rodete de una bomba centrífuga se puede realizar según muchas variantes constructivas: rodetes abiertos, rodetes cerrados, rodetes semi abiertos, rodetes mono-canal, rodetes axiales, rodetes semi-axiales, rodetes desplazados, vórtice, a espiral, etc.

Se pueden suministrar bombas centrífugas monoestadio, o sea, dotadas de un solo generador de caudal y presión (un rodete). Si hay varios rodetes (el primer rodete descarga el líquido sobre el segundo y así sucesivamente) se pueden suministrar, incluso, bombas centrífugas multiestadio, caracterizadas por la suma de presiones emanadas de cada rodete. El funcionamiento de la bomba centrífuga depende del momento inicial del cebado y del modo en el cual se asegura la aspiración del mismo líquido: si la bomba se coloca a un nivel inferior al de la vena de la que se extrae el líquido, éste entra espontáneamente en la bomba (de esta manera se obtiene una instalación bajo nivel). Mientras que si la bomba se coloca sobre el surgente de el cual se desea bombear, el líquido se aspirará: la bomba (así como la tubería de aspiración) tendrá que cebarse preventivamente, o sea, llena de líquido (se tratará de una bomba auto cebada).

El sistema centrífugo presenta infinidad de ventajas con respecto a los otros tipos de bombeo: aseguran un tamaño reducido, un servicio relativamente silencioso y un fácil accionamiento con todos los tipos de motores eléctricos que se encuentran en plaza. Además presenta una fácil adaptación a todos los problemas del tratamiento de líquidos ya que, por medio de adaptaciones a las determinadas condiciones de uso, es capaz de responder a las exigencias de las instalaciones destinadas.


Curva de la bomba
Las prestaciones de una bomba centrífuga se pueden evidenciar gráficamente por medio de una curva característica que, normalmente, tiene datos relativos a la altura geodésica total, a la potenzia efectiva del motor (BHP), a la eficiencia, al NPSHr y al nivel positivo, informaciones indicadas en relación con la capacidad de la bomba.

Cada bomba centrífuga se caracteriza por su particular curva característica, que es la relación entre su caudal y su altura de elevación. Esta representación gráfica, o sea, la trasposición de esta relación en un gráfico cartesiano, es la mejor manera para conocer qué caudal se puede obtener a una determinada altura de elevación y viceversa.

En este caso específico, la curva consiste en una línea que parte de un punto (equivalente a cero caudal /máxima altura de elevación) y que llega hasta el final de la curva con la reducción de la altura de elevación aumentando el caudal.

Está claro que, para modificar esta representación, contribuyen otros elementos como la velocidad, la potencia del motor o el diámetro del rodete. Hay que considerar, además, que las prestaciones de una bomba no se pueden conocer sin saber todos los detalles del sistema en el que tendá que funcionar

La curva de prestaciones de cada bomba cambia en el momento que cambia la velocidad y se explica con las siguientes leyes:


1. la calidad del líquido trasladado cambia en relación con la velocidad
2. la altura de elevación varía en relación con el cuadrado de la velocidad
3. la potencia consumida varía en relación con el cubo de la velocidad

La cantidad de líquido bombeado y la potencia absorbida son, aproximadamente, proporcionales. La descarga de una bomba centrífuga con velocidad constante puede variar de cero caudal (todo cerrado o válvula cerrada), hasta un máximo que depende del proyecto y de las condiciones de trabajo. Por ejemplo, si se duplica la cantidad de fluido bombeado se duplica la velocidad y todas las demás condiciones permanecen iguales, mientras que la altura de elevación aumenta 4 veces y la potencia consumida 8 veces con respecto a las condiciones iniciales.

La potencia absorbida por la bomba puede localizarse en el punto donde la curva de la potencia se encuentra con la curva de la bomba en el punto de trabajo. Pero esto no indica todavía la medida requerida del motor.

Existen distintas maneras para determinar la potencia de los motores de alimentación de la bomba:

* se puede elegir el motor adecuado a la velocidad de accionamiento o al margen de funcionamiento (el mejor método y el menos costoso cuando las condiciones de trabajo de la bomba no cambian tanto).

* se puede leer la potencia al final de la curva (la solución más frecuente que garantiza una potencia adecuada en casi todas las condiciones de ejercicio).

* se puede leer la potencia que corresponde al punto de trabajo sumando el 010% (sistema usado generalmente sólo en las refinerías o en otras aplicaciones donde no hay variaciones en las características de la instalación).

* usando las curvas, todas las condiciones operativas pueden ser consideradas (el mejor método donde están presentes efectos sifones, grandes variaciones en altura geodésica, largas tuberías para llenar …)

Las prestaciones de una bomba, y en especial de las bombas rotodinámicas, están ilustradas con una curva tal que evidencia perfectamente la relación entre el líquido en movimiento por unidad de tiempo y el aumento de la presión.

Pero las curvas referidas a las distintas categorías de bombas tienen características muy diferentes. Por ejemplo, las bombas volumétricas presentan un volumen de caudal independiente de la diferencia de presión (y la curva respectiva es, casi siempre, una línea vertical), mientras que las bombas centrífugas tienen una curva de prestación que, como ya hemos visto, aumentando la altura de elevación opone la disminución del caudal y viceversa. La curva de las bombas periféricas, en cambio, tienen una marcha que al medio de estas dos categorías de bombas.

Una regla general para comprender las fuerzas desarrolladas por una bomba centrífuga es la siguiente: una bomba no crea presión sino que aporta sólo caudal. La presión es nada más que la medida de la resistencia del caudal.

Bomba centrífuga
Bomba que aprovecha el movimento de rotación de una rueda con paletas (rodete) inserida en el cuerpo de la bomba misma. El rodete, alcanzando alta velocidad, proyecta hacia afuera el agua anteriormente aspirada gracias a la fuerza centrífuga que desarrolla, encanalando el líquido en el cuerpo fijo y luego en el tubo de envío.

Bomba sumegida
La bomba sumergida es una bomba con ejes verticales, proyectada para alcanzar grandes profundidades debido al largo de su tubo aspirador. No se tiene que confundir con la bomba sumergible que se caracteriza porque está dotada de un motor de sello hermético sumergido en el mismo líquido que se bombea.

Caudal
Cantidad de líquido (en volumen o en peso) que se debe bombear, trasladadar o elevadar en un cierto intervalo de tiempo por una bomba: normalmente expresada en litros por segundo (l/s), litros por minuto (l/m) o metros cúbicos por hora (m³/h). Símbolo: Q.

Altura de elevación
Altura de elevación de un líquido: el bombeo sobreentiende la elevación de un líquido de un nivel más bajo a un nivel más alto. Expresado en metros de columna de líquido o en bar (presión). En este último caso el líquido bombeado no supera ningún desnivel, sino que va erogado exclusivamente a nivel del suelo a una presión determinada. Símbolo: H.

Bajo nivel
Especial instalación de la bomba, colocada a un nivel inferior al de la vena de la cual se extrae el agua: de esta manera, el agua entra espontáneamente en la bomba sin ninguna dificultad.

Cebado
Llenado de la bomba o de la tubería para quitar el aire presente en ellas. En algunos casos, se pueden suministrar, también, bombas auto cebadas, o sea, dotadas de un mecanismo automático que facilita el cebado y por lo tanto la puesta en marcha de la bomba, lo cual sería imposible de otra manera, y además muy lento.

Cavitación
Fenómeno causado por una inestabilidad en el flujo de la corriente. La cavitación se manifiesta con la formación de cavidad en el líquido bombeado y está acompañada por vibraciones ruidosas, reducción del caudal y, en menor medida, del rendimiento de la bomba. Se provoca por el pasaje rápido de pequeñas burbujas de vapor a través de la bomba: su colapso genera micro chorros que pueden causar graves daños.

Pérdidas de carga
Pérdidas de energía debidas a la fricción del líquido contra las paredes de la tubería, proporcionales al largo de éstas. También son proporcionales al cuadrado de la velocidad de deslizamiento y variabilidad en relación con la naturaleza del líquido bombeado. Cada vez que disminuye el deslizamiento normal del fluido movido representa una posibilidad de pérdidas de carga como los bruscos cambios de dirección o de sección de las tuberías.

Para lograr en la bomba un correcto dimensionamiento, la suma de tales pérdidas se debe agregar a la altura de elevación prevista originariamente.

Sello mecánico
Sello mecánico para ejes rodantes. Usado en todos los casos en que no se puede permitir goteo alguno externo de líquido. Está compuesto por dos anillos con superficie plana, una fija y otra rodante: las dos caras están prensadas juntas de manera que dejan sólo una finísima película hidrodiámica formada por líquido que se retiene para que funcione como lubricante de las partes que se deslizan.

Viscosidad
Se trata de una característica del fluido bombeado: representa su capacidad de oponerse al desplazamiento. La viscosidad varía según la temperatura.

Peso específico
Cada fluido tiene una densidad característica.
El agua, que se usa como término de comparación, convencionalmente tiene un peso específico (o densidad) de 1 (a 4°C y a nivel del mar). El peso específico representa el valor usado para comparar el peso de un cierto volumen de líquido con el peso de la misma cantidad de agua.

jueves, 1 de abril de 2010

Organismos Vivos

Desde la época de Aristóteles los organismos vivos se reunían en solo dos reinos: Animalia y Plantae. Dada la ambigüedad de algunos organismos unicelulares, Ernst Haeckel (S. XIX) creó el tercer reino Protista, para incluir aquellos organismos unicelulares con aspectos intermedios entre plantas y animales. El cuarto reino establecido es Monera, que abarca bacterias y algas verde-azuladas, la característica principal de este reino es la presencia de células procariotas: sin núcleo celular definido ni orgánulos. Los organismos de los reinos Animal, Planta y Protistas están formados por células eucariotas, es decir con núcleo rodeado por membranas y orgánulos celulares.

R. H. Whittaker en 1969 separó a todos los hongos de las plantas en el quinto reino: Fungi, poseen células eucarióticas, tienen núcleos y paredes celulares pero carecen de pigmentos fotosintéticos. En 1978 Whittaker y Margulis conservaron estos mismos 5 reinos pero incluyeron a las algas en los Protistas, denominándolo Protoctista. La mayoría de los biólogos actuales reconocen estos cinco reinos: Moneras, Protistos, Hongos, Plantas y Animales, que se basan en la organización celular, complejidad estructural y modo de nutrición.

En 1977 Carl Woese propuso una categoría superior a reino: DOMINIO, reconociendo tres linajes evolutivos; ARCHAEA, BACTERIA y EUKARYA. Las características para separar estos dominios son el tipo de célula, compuestos que forman la membrana y estructura del ARN. Bajo el microscopio todas las bacterias aparecen similares, además la escasez de fósiles ha dificultado el establecimiento de las relaciones evolutivas entre ambos grupos. La evidencia presentada por la biología molecular sugiere que los primitivos procariotas se separaron en dos grupos muy temprano en el desarrollo de la vida en la tierra, los descendientes de estas dos líneas son las Eubacterias y las Arqueobacterias consideradas el sexto Reino. Versión simplificada y modificada del Árbol filogenético Universal establecido por Carl Woese y su discípulo Gary Olsen que muestra los tres Dominios. El término "dominio" refiere a un nuevo taxón filogenético que incluye tres líneas primarias: Archaea, Bacteria y Eucaria. En línea descendente siguen seis Reinos I-Moneras, II-Arqueobacterias (obviamente separadas de Moneras), III-Protistas, IV-Hongos, V-Plantas y VI-Animales. Se representa en este esquema una raíz única que tiene en su base a LUCA, último antepasado común universal de las células modernas, equivale a lo que es Lucy en el árbol evolutivo de Homo sapiens, es decir, no la primera célula, sino una célula ya evolucionada, con todas las características de sus futuros descendientes: los actuales procariotas y eucariotas. Pero bien podríamos colocar en la base un manojo de raíces o nube difusa para representar a la "Comunidad ancestral común de células primitivas" a partir de la cual divergieron ramas que dieron orígenes a los tres dominios actuales y además surcar la grafica con enlaces transversales entre ramas para indicar la existencia de una transferencia horizontal de genes. En realidad al Árbol filogenético Universal cabría agregarle: "del mundo celular" ya que no incluye a virus, viriones... Los virus , las partículas subvirales, viroides, virusoides, ARNs satélites, los priones y¿....?, son entidades no celulares que poseen rasgos atribuibles a lo que se entiende por vida, poseen individualidad y entidad biológica y se deben incluir por lo tanto entre las formas que contribuyen a la diversidad de la vida. Pretender que no son seres vivos sería paradójico, ya que en muchos casos debemos asegurarnos que estén muertos...........